2021-03-16 14:15:05
369
作者: Si Suna, Nihad Cheragab, Han-Ning Jiangb, Qian-Ru Xiaob, Peng-Cheng Gaoa, Yang Wanga, Ying-Ying Weia, Xiao-Wei Wangc, Yong Jianga
a School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
b State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, PR China
c Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, PR China
摘要:A variety of three-dimensional DNA assemblies have been proposed as drug carriers owing to their good biocompatibility and easy fabrication. In this study, inspired by the structure of cockleburs, a novel aptamer-tethered DNA assembly was developed for effective targeted drug delivery. The Apt-nanocockleburs were fabricated via a facile process of DNA base pairing: four complementary DNA single strands, including one aptamer-ended strand and three sticky-end strands, were applied to pair with each other. The main body of the nanocockleburs can load doxorubicin (Dox) whilst the covered aptamer spines bind to the target MCF-7 cells. The self-assembled Apt-nanocockleburs exhibit higher cell uptake as well as increased cytotoxicity to MCF-7 cells than DNA nanocockleburs without aptamers. This study provided a DNA constructing platform to produce new drug carriers with high selectivity for cancer targeted drug delivery.
關鍵詞:Self-assembly; DNA nanocockleburs; Target drug delivery; Aptamers
分享到微信朋友圈
分享到其他